Analysis of the geomagnetic activity of the Dst index and self-affine fractals using wavelet transforms
نویسندگان
چکیده
The geomagnetic activity of the Dst index is analyzed using wavelet transforms and it is shown that the Dst index possesses properties associated with self-affine fractals. For example, the power spectral density obeys a powerlaw dependence on frequency, and therefore the Dst index can be viewed as a self-affine fractal dynamic process. In fact, the behaviour of the Dst index, with a Hurst exponent H≈0.5 (power-law exponent β≈2) at high frequency, is similar to that of Brownian motion. Therefore, the dynamical invariants of the Dst index may be described by a potential Brownian motion model. Characterization of the geomagnetic activity has been studied by analysing the geomagnetic field using a wavelet covariance technique. The wavelet covariance exponent provides a direct effective measure of the strength of persistence of the Dst index. One of the advantages of wavelet analysis is that many inherent problems encountered in Fourier transform methods, such as windowing and detrending, are not necessary.
منابع مشابه
Forecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملEffects of St Patrick’s Day Intervals Geomagnetic Storms on the Accuracy of GNSS Positioning and Total Electron Content over Nigeria
Total electron content (TEC) and GNSS positioning error over two Nigeria GNSS stations (CLBR: Latitude; 4.9503°E, Longitude; 8.3514°N, FUTY: Latitude; 9.3497°E, Longitude; 12.4978°N) were studied during the geomagnetic storms of March 17, 2015 minimum Dst (Disturbed storm time) -223nT and that of March 17, 2013 minimum Dst of -132nT (the St. Patrick’s...
متن کاملClassical Wavelet Transforms over Finite Fields
This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...
متن کاملDamage Detection in Post-tensioned Slab Using 2D Wavelet Transforms
Earthquake force, loading more than structural capacity, cracking, material fatigue and the other unpredicted events were undeniable in the structure life cycle in order that environmental conditions of the structure would be changed and treats health. Damage of structures such as crack, corrosion of the post tension cables from inappropriate grouting of the post tension structures and etc. can...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks and ARIMA (Case study of price index of Tehran Stock Exchange)
The goal of this research is to predict total stock market index of Tehran Stock Exchange, using the compound method of ARIMA and neural network in order for the active participations of finance market as well as macro decision makers to be able to predict trend of the market. First, the series of price index was decomposed by wavelet transform, then the smooth's series predicted by using...
متن کامل